CD4(+) T-cell- and gamma interferon-dependent protection against murine malaria by immunization with linear synthetic peptides from a Plasmodium yoelii 17-kilodalton hepatocyte erythrocyte protein.
نویسندگان
چکیده
Most work on protective immunity against the pre-erythrocytic stages of malaria has focused on induction of antibodies that prevent sporozoite invasion of hepatocytes, and CD8(+) T-cell responses that eliminate infected hepatocytes. We recently reported that immunization of A/J mice with an 18-amino-acid synthetic linear peptide from Plasmodium yoelii sporozoite surface protein 2 (SSP2) in TiterMax adjuvant induces sterile protection that is dependent on CD4(+) T cells and gamma interferon (IFN-gamma). We now report that immunization of inbred A/J mice and outbred CD1 mice with each of two linear synthetic peptides from the 17-kDa P. yoelii hepatocyte erythrocyte protein (HEP17) in the same adjuvant also induces protection against sporozoite challenge that is dependent on CD4(+) T cells and IFN-gamma. The SSP2 peptide and the two HEP17 peptides are recognized by B cells as well as T cells, and the protection induced by these peptides appears to be directed against the infected hepatocytes. In contrast to the peptide-induced protection, immunization of eight different strains of mice with radiation-attenuated sporozoites induces protection that is absolutely dependent on CD8(+) T cells. Data represented here demonstrate that CD4(+) T-cell-dependent protection can be induced by immunization with linear synthetic peptides. These studies therefore provide the foundation for an approach to pre-erythrocytic-stage malaria vaccine development, based on the induction of protective CD4(+) T-cell responses, which will complement efforts to induce protective antibody and CD8(+) T-cell responses.
منابع مشابه
Circumventing genetic restriction of protection against malaria with multigene DNA immunization: CD8+ cell-, interferon gamma-, and nitric oxide-dependent immunity
Despite efforts to develop vaccines that protect against malaria by inducing CD8+ T cells that kill infected hepatocytes, no subunit vaccine has been shown to circumvent the genetic restriction inherent in this approach, and little is known about the interaction of subunit vaccine-induced immune effectors and infected hepatocytes. We now report that immunization with plasmid DNA encoding the pl...
متن کاملA hybrid multistage protein vaccine induces protective immunity against murine malaria.
We have previously reported the design and expression of chimeric recombinant proteins as an effective platform to deliver malaria vaccines. The erythrocytic and exoerythrocytic protein chimeras described included autologous T helper epitopes genetically linked to defined B cell epitopes. Proof-of-principle studies using vaccine constructs based on the Plasmodium yoelii circumsporozoite protein...
متن کاملشناسایی اپی توپهای سلولهای CD4+ T در پروتئین ترشحی MPB51 مایکوباکتریوم توبرکلوزیس در موشهای C57BL/6
Introduction & Objective: Both CD4+ type 1 helper (Th1) cells and CD8+ T cells play effective roles in protection against Mycobacterium tuberculosis infection. DNA vaccine encoding MPB51 can induce Th1-type immune responses and protective immunity upon challenge with M.tuberculosis. This study address to identify T-cell immunodominant epitopes on MPB51 in C57BL/6 mice. Materials & Methods : ...
متن کاملProtective immunity against Plasmodium yoelii malaria induced by immunization with particulate blood-stage antigens.
The Plasmodium yoelii murine model was used to test several combinations of blood-stage antigens and adjuvants for the ability to induce immunity to blood-stage malaria. Upon fractionation of whole blood-stage antigen into soluble and insoluble components, only the particulate antigens (pAg) induced protective immune responses. Of a number of adjuvants tested, Quil A was the most effective. Imm...
متن کاملVaccination with live Plasmodium yoelii blood stage parasites under chloroquine cover induces cross-stage immunity against malaria liver stage.
Immunity to malaria has long been thought to be stage-specific. In this study we show that immunization of BALB/c mice with live erythrocytes infected with nonlethal strains of Plasmodium yoelii under curative chloroquine cover conferred protection not only against challenge by blood stage parasites but also against sporozoite challenge. This cross-stage protection was dose-dependent and long l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 67 11 شماره
صفحات -
تاریخ انتشار 1999